Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae reveals a functional role in aflatoxin B1 detoxification.

Identifieur interne : 002777 ( Main/Exploration ); précédent : 002776; suivant : 002778

Expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae reveals a functional role in aflatoxin B1 detoxification.

Auteurs : Edward J. Kelly [États-Unis] ; Kristin E. Erickson ; Christian Sengstag ; David L. Eaton

Source :

RBID : pubmed:11752683

Descripteurs français

English descriptors

Abstract

The metabolism and genotoxicity of the carcinogenic mycotoxin, aflatoxin B1 (AFB), was studied in the lower eukaryotic yeast Saccharomyces cerevisiae. Recombinant strains of yeast were engineered to express human cDNAs for CYP1A1, CYP1A2, and microsomal epoxide hydrolase (mEH). Coexpression of mEH with CYP1A1 or CYP1A2 resulted in significant decreases in measurements of AFB genotoxicity. In cells expressing CYP1A2 and mEH, the level of AFB-DNA adducts was decreased by 50% relative to cells expressing CYP1A2 alone. Mitotic recombination, as assayed by gene conversion at the trp5 locus, was diminished by 50% or greater in cells coexpressing mEH and CYP1A2 compared to CYP1A2 alone. The mutagenicity of AFB in the Ames assay was also decreased by approximately 50% when AFB was incubated with microsomes containing CYP1A1 or CYP1A2 and mEH versus CYP1A1 or CYP1A2 alone. The biotransformation of AFB by CYPs is known to involve the generation of a reactive epoxide intermediate, AFB-8,9-epoxide, but previous direct biochemical and kinetic studies have failed to demonstrate any functional role for mEH in AFB detoxification. By reconstructing a metabolic pathway in intact yeast, we have shown, for the first time, that mEH may play a role in mitigating the carcinogenic effects of AFB.

DOI: 10.1093/toxsci/65.1.35
PubMed: 11752683


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae reveals a functional role in aflatoxin B1 detoxification.</title>
<author>
<name sortKey="Kelly, Edward J" sort="Kelly, Edward J" uniqKey="Kelly E" first="Edward J" last="Kelly">Edward J. Kelly</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental Health and Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98105, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health and Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98105</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Erickson, Kristin E" sort="Erickson, Kristin E" uniqKey="Erickson K" first="Kristin E" last="Erickson">Kristin E. Erickson</name>
</author>
<author>
<name sortKey="Sengstag, Christian" sort="Sengstag, Christian" uniqKey="Sengstag C" first="Christian" last="Sengstag">Christian Sengstag</name>
</author>
<author>
<name sortKey="Eaton, David L" sort="Eaton, David L" uniqKey="Eaton D" first="David L" last="Eaton">David L. Eaton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11752683</idno>
<idno type="pmid">11752683</idno>
<idno type="doi">10.1093/toxsci/65.1.35</idno>
<idno type="wicri:Area/Main/Corpus">002821</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002821</idno>
<idno type="wicri:Area/Main/Curation">002821</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002821</idno>
<idno type="wicri:Area/Main/Exploration">002821</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae reveals a functional role in aflatoxin B1 detoxification.</title>
<author>
<name sortKey="Kelly, Edward J" sort="Kelly, Edward J" uniqKey="Kelly E" first="Edward J" last="Kelly">Edward J. Kelly</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Environmental Health and Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98105, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Health and Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98105</wicri:regionArea>
<orgName type="university">Université de Washington</orgName>
<placeName>
<settlement type="city">Seattle</settlement>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Erickson, Kristin E" sort="Erickson, Kristin E" uniqKey="Erickson K" first="Kristin E" last="Erickson">Kristin E. Erickson</name>
</author>
<author>
<name sortKey="Sengstag, Christian" sort="Sengstag, Christian" uniqKey="Sengstag C" first="Christian" last="Sengstag">Christian Sengstag</name>
</author>
<author>
<name sortKey="Eaton, David L" sort="Eaton, David L" uniqKey="Eaton D" first="David L" last="Eaton">David L. Eaton</name>
</author>
</analytic>
<series>
<title level="j">Toxicological sciences : an official journal of the Society of Toxicology</title>
<idno type="ISSN">1096-6080</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aflatoxin B1 (metabolism)</term>
<term>Aflatoxin B1 (toxicity)</term>
<term>Cytochrome P-450 CYP1A1 (drug effects)</term>
<term>Cytochrome P-450 CYP1A1 (genetics)</term>
<term>Cytochrome P-450 CYP1A1 (metabolism)</term>
<term>Cytochrome P-450 CYP1A2 (drug effects)</term>
<term>Cytochrome P-450 CYP1A2 (genetics)</term>
<term>Cytochrome P-450 CYP1A2 (metabolism)</term>
<term>DNA Adducts (drug effects)</term>
<term>Epoxide Hydrolases (administration & dosage)</term>
<term>Epoxide Hydrolases (genetics)</term>
<term>Epoxide Hydrolases (metabolism)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Microsomes (drug effects)</term>
<term>Microsomes (enzymology)</term>
<term>Mutagenicity Tests (MeSH)</term>
<term>Organisms, Genetically Modified (MeSH)</term>
<term>Plasmids (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adduits à l'ADN (effets des médicaments et des substances chimiques)</term>
<term>Aflatoxine B1 (métabolisme)</term>
<term>Aflatoxine B1 (toxicité)</term>
<term>Cytochrome P-450 CYP1A1 (effets des médicaments et des substances chimiques)</term>
<term>Cytochrome P-450 CYP1A1 (génétique)</term>
<term>Cytochrome P-450 CYP1A1 (métabolisme)</term>
<term>Cytochrome P-450 CYP1A2 (effets des médicaments et des substances chimiques)</term>
<term>Cytochrome P-450 CYP1A2 (génétique)</term>
<term>Cytochrome P-450 CYP1A2 (métabolisme)</term>
<term>Epoxide hydrolase (administration et posologie)</term>
<term>Epoxide hydrolase (génétique)</term>
<term>Epoxide hydrolase (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Microsomes (effets des médicaments et des substances chimiques)</term>
<term>Microsomes (enzymologie)</term>
<term>Organismes génétiquement modifiés (MeSH)</term>
<term>Plasmides (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Tests de mutagénicité (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Epoxide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Cytochrome P-450 CYP1A1</term>
<term>Cytochrome P-450 CYP1A2</term>
<term>DNA Adducts</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochrome P-450 CYP1A1</term>
<term>Cytochrome P-450 CYP1A2</term>
<term>Epoxide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aflatoxin B1</term>
<term>Cytochrome P-450 CYP1A1</term>
<term>Cytochrome P-450 CYP1A2</term>
<term>Epoxide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Aflatoxin B1</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Epoxide hydrolase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Microsomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Adduits à l'ADN</term>
<term>Cytochrome P-450 CYP1A1</term>
<term>Cytochrome P-450 CYP1A2</term>
<term>Microsomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Microsomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Microsomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytochrome P-450 CYP1A1</term>
<term>Cytochrome P-450 CYP1A2</term>
<term>Epoxide hydrolase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aflatoxine B1</term>
<term>Cytochrome P-450 CYP1A1</term>
<term>Cytochrome P-450 CYP1A2</term>
<term>Epoxide hydrolase</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Aflatoxine B1</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Enzymologic</term>
<term>Humans</term>
<term>Mutagenicity Tests</term>
<term>Organisms, Genetically Modified</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Organismes génétiquement modifiés</term>
<term>Plasmides</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Tests de mutagénicité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The metabolism and genotoxicity of the carcinogenic mycotoxin, aflatoxin B1 (AFB), was studied in the lower eukaryotic yeast Saccharomyces cerevisiae. Recombinant strains of yeast were engineered to express human cDNAs for CYP1A1, CYP1A2, and microsomal epoxide hydrolase (mEH). Coexpression of mEH with CYP1A1 or CYP1A2 resulted in significant decreases in measurements of AFB genotoxicity. In cells expressing CYP1A2 and mEH, the level of AFB-DNA adducts was decreased by 50% relative to cells expressing CYP1A2 alone. Mitotic recombination, as assayed by gene conversion at the trp5 locus, was diminished by 50% or greater in cells coexpressing mEH and CYP1A2 compared to CYP1A2 alone. The mutagenicity of AFB in the Ames assay was also decreased by approximately 50% when AFB was incubated with microsomes containing CYP1A1 or CYP1A2 and mEH versus CYP1A1 or CYP1A2 alone. The biotransformation of AFB by CYPs is known to involve the generation of a reactive epoxide intermediate, AFB-8,9-epoxide, but previous direct biochemical and kinetic studies have failed to demonstrate any functional role for mEH in AFB detoxification. By reconstructing a metabolic pathway in intact yeast, we have shown, for the first time, that mEH may play a role in mitigating the carcinogenic effects of AFB.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11752683</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1096-6080</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>65</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2002</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Toxicological sciences : an official journal of the Society of Toxicology</Title>
<ISOAbbreviation>Toxicol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae reveals a functional role in aflatoxin B1 detoxification.</ArticleTitle>
<Pagination>
<MedlinePgn>35-42</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The metabolism and genotoxicity of the carcinogenic mycotoxin, aflatoxin B1 (AFB), was studied in the lower eukaryotic yeast Saccharomyces cerevisiae. Recombinant strains of yeast were engineered to express human cDNAs for CYP1A1, CYP1A2, and microsomal epoxide hydrolase (mEH). Coexpression of mEH with CYP1A1 or CYP1A2 resulted in significant decreases in measurements of AFB genotoxicity. In cells expressing CYP1A2 and mEH, the level of AFB-DNA adducts was decreased by 50% relative to cells expressing CYP1A2 alone. Mitotic recombination, as assayed by gene conversion at the trp5 locus, was diminished by 50% or greater in cells coexpressing mEH and CYP1A2 compared to CYP1A2 alone. The mutagenicity of AFB in the Ames assay was also decreased by approximately 50% when AFB was incubated with microsomes containing CYP1A1 or CYP1A2 and mEH versus CYP1A1 or CYP1A2 alone. The biotransformation of AFB by CYPs is known to involve the generation of a reactive epoxide intermediate, AFB-8,9-epoxide, but previous direct biochemical and kinetic studies have failed to demonstrate any functional role for mEH in AFB detoxification. By reconstructing a metabolic pathway in intact yeast, we have shown, for the first time, that mEH may play a role in mitigating the carcinogenic effects of AFB.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>Edward J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Health and Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 98105, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Erickson</LastName>
<ForeName>Kristin E</ForeName>
<Initials>KE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sengstag</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eaton</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ES-07033</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-ES05780</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-ES07032</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Toxicol Sci</MedlineTA>
<NlmUniqueID>9805461</NlmUniqueID>
<ISSNLinking>1096-0929</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018736">DNA Adducts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9N2N2Y55MH</RegistryNumber>
<NameOfSubstance UI="D016604">Aflatoxin B1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.14.1</RegistryNumber>
<NameOfSubstance UI="D019363">Cytochrome P-450 CYP1A1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.14.1</RegistryNumber>
<NameOfSubstance UI="D019388">Cytochrome P-450 CYP1A2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.3.2.-</RegistryNumber>
<NameOfSubstance UI="D004851">Epoxide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016604" MajorTopicYN="N">Aflatoxin B1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="Y">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019363" MajorTopicYN="N">Cytochrome P-450 CYP1A1</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019388" MajorTopicYN="N">Cytochrome P-450 CYP1A2</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018736" MajorTopicYN="N">DNA Adducts</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004851" MajorTopicYN="N">Epoxide Hydrolases</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008861" MajorTopicYN="N">Microsomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009152" MajorTopicYN="N">Mutagenicity Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030781" MajorTopicYN="N">Organisms, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>12</Month>
<Day>26</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>12</Month>
<Day>26</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11752683</ArticleId>
<ArticleId IdType="doi">10.1093/toxsci/65.1.35</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Seattle</li>
</settlement>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Eaton, David L" sort="Eaton, David L" uniqKey="Eaton D" first="David L" last="Eaton">David L. Eaton</name>
<name sortKey="Erickson, Kristin E" sort="Erickson, Kristin E" uniqKey="Erickson K" first="Kristin E" last="Erickson">Kristin E. Erickson</name>
<name sortKey="Sengstag, Christian" sort="Sengstag, Christian" uniqKey="Sengstag C" first="Christian" last="Sengstag">Christian Sengstag</name>
</noCountry>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Kelly, Edward J" sort="Kelly, Edward J" uniqKey="Kelly E" first="Edward J" last="Kelly">Edward J. Kelly</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002777 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002777 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11752683
   |texte=   Expression of human microsomal epoxide hydrolase in Saccharomyces cerevisiae reveals a functional role in aflatoxin B1 detoxification.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11752683" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020